

SIDDHARTH INSTITUTE OF ENGINEERING AND TECHNOLOGY:: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : Compiler Design (20CS0516) **Course & Branch :** B. Tech – CSE

Year & Sem: III B.Tech & I-Sem Regulation: R20

UNIT –I INTRODUCTION AND LEXICAL ANALYSIS

1	а	Describe about different language processors used in compiler design	[L2][CO1]	[6M]
	b	Give the differences between compiler and interpreter.	[L4][CO1]	[6M]
2		Explain the phases of a compiler with neat diagram.	[L2][CO2]	[12M]
3	а	Define compiler.	[L1][CO1]	[2M]
	b	Explain passes of compiler with neat diagram.	[L2][CO2]	[10M]
4		Design the compiler by using the source program position=intial+rate*60.	[L6][CO3]	[12M]
5	а	Analyze the reasons for separating the lexical analysis and syntax analysis.	[L4][CO2]	[4M]
	b	Design the compiler by using the source program a=b+c*10.	[L6][CO3]	[8M]
6	а	Describe Bootstrapping	[L2][CO1]	[8M]
	b	Illustrate Application of compiler technology	[L3][CO1]	[4M]
7	а	Discuss the Compiler construction Tools	[L2][CO3]	[6M]
	а	Differentiate tokens, patterns, and lexeme.	[L4][CO1]	[6M]
8	а	Explain in detail about the role of lexical analyzer in Compiler Design.	[L2][CO1]	[6M]
	b	Write about input buffering?	[L3][CO1]	[6M]
9		Discriminate the following terms	[L5][CO1]	[12M]
		a) Specification of Tokens		
		b) Recognition of Tokens		
10		Explain LEX Tool with the structure of Lex Program	[L2][CO3]	[12M]

UNIT —II SYNTAX ANALYSIS AND TOP DOWN PARSING

1	а	Explain the role of parser.	[L2][CO1]	[4M]
	b	Define Context Free Grammar with example.	[L1][CO1]	[4M]
	С	Compare left most and right most derivations with examples	[L4][CO1]	[4M]
2	а	Define parse tree.	[L1][CO2]	[2M]
	b	Construct Leftmost and Rightmost derivation and parse tree for the string $3*2+5$ from the given grammar. Also check it's ambiguity. Set of alphabets $\Sigma = \{0,,9, +, *, (,)\}$	[L6][CO2]	[10M]
		E → I		
		E →E + E		
		E →E * E		
		$E \rightarrow (E)$		
		$I \rightarrow \varepsilon \mid 0 \mid 1 \mid \dots \mid 9$		
3	а	Define Ambiguity.	[L1][CO1]	[2M]
	b	Interpret how to eliminate ambiguity for the given Ambiguous Grammar.	[L3][CO1]	[10M]
4	а	Describe the procedure of eliminating Left recursion.	[L5][CO1]	[4M]
	b	Eliminate left recursion for the following grammar	[L1][CO1]	[4M]
		$E \rightarrow E + T/T$ $T \rightarrow T * F/F$ $F \rightarrow (E)/id$		
	c	Show what do you understand by Left factoring. Perform left factor for the grammar A→abB/aB/cdg/cdeB/cdfB	[L2][CO1]	[4M]
5	а	List the types of Parsers available	[L1][CO2]	[4M]
	b	Design the recursive decent parser for the following grammar $E \rightarrow E+T/T$ $T \rightarrow T*F/F$ $F \rightarrow (E)/id$	[L6][CO3]	[8M]
6	а	What is meant by Non-recursive predictive parsing	[L2][CO3]	[2M]
	b	Illustrate the rules to be followed in finding the FIRST and FOLLOW.	[L3][CO1]	[6M]
	С	Find FIRST and FOLLOW for the following grammar? $E \rightarrow E+T/T$ $T \rightarrow T*F/F$	[L3][CO2]	[4M]

 $F\rightarrow (E)/id$

7 Consider the grammar [L6][CO3] **[12M]**

A→d

 $E \rightarrow b$

D**→**b | ε

 $B \rightarrow c$

Construct the predictive parse table and check whether the given grammar is LL(1) or not.

8 Consider the grammar $E \rightarrow TE'$

[L4][CO2] **[12M]**

$$E' \rightarrow +TE' \mid -TE' \mid \epsilon$$

 $T\rightarrow FT'$

 $T' \rightarrow *FT' \mid /FT' \mid \epsilon$

F→GG'

 $G' \rightarrow ^{r} F / \epsilon$

 $G \rightarrow (E) / id$

Calculate FIRST and FOLLOW for the above grammar and

Construct LL(1) Table for the above grammar.

9 Consider the grammar [L6][CO3] **[12M]**

$$E \rightarrow E + T/T$$
, $T \rightarrow T * F/F$, $F \rightarrow (E) | id$

Design predictive parsing table and check the given grammar is LL(1) or not?

10 **a** Discuss the types of errors. [L2][CO2] **[6M]**

b Explain Error recovery in predictive parsing with an Example. [L2][CO2] **[6M]**

UNIT –III BOTTOM UP PARSING AND SEMANTIC ANALYSIS

1	а	Explain about handle pruning	[L2][CO1]	[6 M]
	b	Summarize about SLR parsing	[L2][CO1]	[6 M]
2	а	Describe bottom up parsing	[L1][CO2]	[4M]
	b	Differences between SLR, CLR, LALR parsers	[L4][CO2]	[8M]
3		Prepare Shift Reduce Parsing for the input string using the grammar $S \rightarrow (L) a \qquad L \rightarrow L, S S$	[L6][CO3]	[12M]
		a. $(a,(a,a))$ b. (a,a)	[] 1][[](2]	[2] []
4	а	Define augmented grammar.		[2M]
	b	Construct the LR(0) items for the following Grammar $S \rightarrow L=R / R$	[L6][CO3]	[10M]
		L→*R /id		
		R→L		
5		Construct SLR Parser for the following grammar $E \rightarrow E+T/T$	[L6][CO3]	[12M]
		T→TF / F		
		F→F*/a/b		
6		Construct CLR Parsing table for the given grammar	[L6][CO3]	[12M]
		S→CC C→aC/d		
7		Design the LALR parser for the following Grammar $S \rightarrow AA A \rightarrow aA A \rightarrow b$	[L6][CO3]	[12M]
8	а	Define YACC parser in Syntax Analysis.	[L1][CO3]	[2M]
	b	Explain in detail about YACC Parser generator tool.	[L2][CO3]	[10M]
9	а	Explain syntax directed definition with example	[L2][CO2]	[6M]
	b	Define a syntax-directed translation and explain with example.	[L2][CO2]	[6M]
10	а	Give the evaluation order of SDD with an example.	[L5][CO2]	[6 M]
	b	Discuss Type Checking with suitable examples.	[L2][CO4]	[6 M]

UNIT –IV RUN TIME ENVIRONMENT AND INTERMEDIATE CODE GENERATION

1		Analyse different types of Intermediate Code with an example.	[L4][CO5]	[12M]
2		Explain Representation of Three Address Codes with suitable Examples	[L2][CO5]	[12M]
3		Produce quadruple, triples and indirect triples for following expression: $(x + y) * (y + z) + (x + y + z)$	[L6][CO5]	[12M]
4	а	Describe scope and life time of variable.	[L2][CO4]	[2M]
	b	Illustrate Control Flow Statements.	[L3][CO4]	[10M]
5		Describe the Storage Organization with simple examples.	[L2][CO4]	[12M]
6	а	List out the properties of memory management	[L1][CO4]	[4M]
	b	Discuss Storage allocation strategies with suitable example	[L2][CO4]	[8M]
7		Evaluate the following termsi. Stack allocationii. Static allocationiii. heap allocation	[L5][CO4]	[12M]
8	а	Define Activation Record.	[L1][CO5]	[2M]
	b	Sketch the format of Activation Record in stack allocation and explain each field in it.	[L3][CO5]	[10M]
9	а	Discuss about symbol table entries.	[L2][CO4]	[6M]
	b	Describe the various operations on symbol table.	[L2][CO4]	[6M]
10		Define Symbol table. Explain different types of Data structure used for symbol table.	[L2][CO4]	[12M]

Course Code: 20CS0516

$\begin{array}{c} UNIT-V \\ \text{CODE GENERATOR} \end{array}$

1	а	Interpret optimization techniques on basic blocks with simple example.	[L3][CO5]	[12M]
2	а	Discuss about function preserving transformations.	[L2][CO6]	[6M]
	b	Describe about loop optimization technique.	[L2][CO5]	[6M]
3		Explain the following	[L3][CO6]	[12M]
		i) Basic blocks ii) Flow Graphs		
4		Analyse different types of optimization techniques of basic blocks	[L4][CO6]	[12M]
5	а	Create the DAG for following statement. a+b*c+d+b*c	[L6][CO6]	[6M]
	b	Construct the DAG for the following basic blocks	[L6][CO6]	[6M]
		1. t1:=4*i		
		2. t2:=a[t1]		
		3. t3:=4*i		
		4. t4:=b[t3]		
		5. t5:=t2*t4		
		6. t6:=prod+t5		
		7. prod:=t6		
		8. t7:=i+1		
		9. i:=t7		
		if i<=20 goto 1		
6	а	List out the properties of global data flow analysis and explain it.	[L2][CO6]	[6M]
	b	Discuss about machine dependent optimization	[L2][CO5]	[6M]
7	b	Explain the peephole optimization Technique with examples.	[L2][CO5]	[12M]
8		List and explain the issues in the design of a code generator	[L2][CO6]	[12M]
9	а	Analyse the different forms in target program.	[L4][CO6]	[6M]

Course Code: 20CS0516

b Explain the target machine in code generator. [L2][CO6] **[6M]**

10 a Analyze Simple code generator [L4][CO6] **[6M]**

b Evaluate Register allocation and register assignment techniques. [L5][CO6] **[6M]**

Prepared by: Mrs.G.Indiravathi, Mrs D.Viswasahithya Dept. of CSE